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Thermal runaway instability induced by material softening due to shear heating represents a potential
mechanism for mechanical failure of viscoelastic solids. In this work we present a model based on a continuum
formulation of a viscoelastic material with Arrhenius dependence of viscosity on temperature and investigate
the behavior of the thermal runaway phenomenon by analytical and numerical methods. Approximate analyti-
cal descriptions of the problem reveal that onset of thermal runaway instability is controlled by only two
dimensionless combinations of physical parameters. Numerical simulations of the model independently verify
these analytical results and allow a quantitative examination of the complete time evolutions of the shear stress
and the spatial distributions of temperature and displacement during runaway instability. Thus we find that
thermal runaway processes may well develop under nonadiabatic conditions. Moreover, nonadiabaticity of the
unstable runaway mode leads to continuous and extreme localization of the strain and temperature profiles in
space, demonstrating that the thermal runaway process can cause shear banding. Examples of time evolutions
of the spatial distribution of the shear displacement between the interior of the shear band and the essentially
nondeforming material outside are presented. Finally, a simple relation between evolution of shear stress,
displacement, shear-band width, and temperature rise during runaway instability is given.
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I. INTRODUCTION

Many materials are known to exhibit fracture phenomena
that, in apparent contradiction to the expected failure behav-
ior usually associated with plastic yielding or brittle crack-
ing, are characterized by shear deformation localized along a
single or a few bands. Ordinarily, one would expect brittle
fracture to occur by the opening of microscopic cracks along
the fault plane, while conventional plastic yielding associ-
ated with deformation of crystals is known to be pervasive
and involve work hardening which seem to be incompatible
with the localization of the deformation in shear bands indi-
cating some form of work softening. This distinct mode of
shear failure is observed in a variety of materials, including
some amorphous solids such as polymers �1–3� and bulk
metallic glasses �4–7�, rocks under high confining pressure
�8–10�, and crystalline solids deformed rapidly in impact ex-
periments �11,12�.

The formation of shear bands in bulk metallic glasses and
rocks under high confinement has attracted much attention
because, in these materials, the mechanism responsible for
the weakening of the material in the bands often initiates
instabilities that lead to catastrophic shear failure along one
dominant band. Accordingly, shear banding represents the
primary mode of failure in many of these material systems.
Experimental studies of fracture surfaces of rock samples
subjected to high confining pressures demonstrate that the
region near the dominant band is essentially devoid of mi-
crocracks �8,13�, pointing toward a mechanism leading to
viscous sliding without cracking. Similarly, studies of frac-

ture surfaces of metallic glass samples suggest that cata-
strophic failure is attributable to a large decrease in the vis-
cosity of the material in the catastrophic shear band �5,14�.
As a consequence, these materials appear to fail in a globally
brittle, but locally ductile, manner. The shear bands in me-
tallic glasses, 10–20 nm thick �15�, seem to be accompanied
by significant local increases in temperature. Vein patterns
and solidified drops on the fracture surfaces �5,7,16� indica-
tive of melting of material during catastrophic failure as well
as indirect experimental measurements of temperature rises
during shear-band operation �6� lend support to this view.
Similarly, localized shear failure occurring in the deeper
parts of the Earth’s lithosphere, believed to be related to
earthquakes located several tens of kilometers below the
Earth’s surface, may involve substantial rises in temperature.
Geological field observations of melted rock in the form of
cm thick pseudotachylyte layers along shear faults provide
evidence for considerable heat dissipation during such failure
�9,17–19�. The catastrophic shear failure process thus seems
to be characterized by spontaneous release of a substantial
proportion of the stored elastic energy as heat in the region
of the rapidly forming shear band.

Apart from the observed differences in the qualitative
macroscopic features of localized shear failure as compared
to ordinary brittle and plastic failure behaviors, the circum-
stances under which shear failure seems to occur indicate
that this mode of failure may not be ascribed to the conven-
tional mechanisms of opening of microscopic cracks or crys-
tallographic slip by dislocation motion. For instance, the clo-
sure of cracks at high confining pressures, nonplanar crystal
structure of minerals, and disorder of mineral grain orienta-
tions are all factors that inhibit these mechanisms from op-
erating in rocks in the Earth’s interior. In metallic glasses the
high degree of structural disorder causes dislocations to ex-*simen.brack@iu.hio.no
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perience a large number of obstacles, reducing their mobility
and inhibiting plastic flow. Because of the absence of these
basic weakening mechanisms, mantle rocks and bulk metal-
lic glasses can demonstrate exceptionally high strengths.
However, although these materials have strengths approach-
ing the theoretical shear strength limit at which atomic bonds
break �20�, the fact that shear-band thicknesses are usually
much larger than interatomic spacing suggests the existence
of alternative mechanisms responsible for the catastrophic
shear failure. In metallic glasses it has been proposed that
granular structure on the microscopic scale may be largely
involved in determining the finite width of a shear band �21�.
Discrete element modeling has shown that granular packings
subjected to compression may fail by the formation of shear
bands or faults due to dilatancy, predicting a shear-band
width of about ten grain diameters �22,23�. However, experi-
mental investigations of deformation in a class of shear
yielding polymers �1� show that, despite of the fact that the
molecular and microstructural deformation mechanisms are
rather different, the phenomenon of shear banding in these
materials is strikingly similar to the localization of deforma-
tion in metallic materials. This suggests that the general
large-scale features of the shear-banding phenomenon might
be appropriately modeled using a continuum formulation as
long as the grain size is small.

Several earlier works have investigated the possibility of
shear failure induced by softening mechanisms facilitating
ductile or plasticlike deformation. Mainly two explanations
have been proposed for the observed localization of shear
�14,24–26�. The first, based on various micromechanical
theories developed by Spaepen, Argon, Falk and Langer, and
others in order to describe plasticity in amorphous materials
�21,25,27–32�, suggests that material softening due to struc-
tural changes is a mechanism for strain localization. In this
case it is usually assumed that the local heat generation dur-
ing deformation is only a secondary effect and is important
to the evolution of the material in the bands only in the later
stages of slip. In a recent work, however, Manning et al. �33�
proposed that the heat generated by plastic deformation is
dissipated in the system’s configurational degrees of freedom
and raises an effective temperature rather than the usual ki-
netic temperature. Thus it was shown that the effective tem-
perature could provide a mechanism for strain localization.

The second explanation, first proposed by Griggs and
Baker �34� and later developed by Ogawa �35� in order to
explain the occurrence of deep-focus earthquakes, introduces
the concept of thermal softening according to which the ma-
terial is weakened primarily due to the effect of local heat-
ing. Local heating increases the temperature which leads to a
corresponding decrease in the strongly temperature depen-
dent viscosity. Recent theoretical results �36� have demon-
strated that, even under nonadiabatic conditions, the thermal
softening mechanism may induce a thermal runaway insta-
bility exhibiting progressive strain localization, thus leading
to shear-band formation and consequent material failure.
These results are apparently consistent with experimental re-
sults on bulk metallic glasses �6,37� showing that shear-band
operation cannot be fully adiabatic.

In the present work we expand on the theoretical investi-
gations of thermal runaway instability in solids, already pre-

sented in abbreviated form in Ref. �36�. Our model is based
on a simple continuum formulation of a viscoelastic medium,
i.e., the rheology contains both viscous and elastic compo-
nents. The viscous material response is supposed to be in-
duced by thermally activated processes, yielding a strongly
temperature dependent viscosity. Thus the model accounts
for nonelastic mechanical responses shown by real materials
even below the conventional elastic limit, such as the well-
known phenomena of creep or relaxation. The temperature in
the system is given by the equation for energy conservation.
The viscoelastic rheology equation, governing the mechani-
cal behavior of the material, is then coupled to the energy
conservation equation through temperature dependent vis-
cosity. We shall make the assumption that initiation of local-
ized deformation is triggered by small �but macroscopic� lo-
cal heterogeneities or thermal fluctuations in the otherwise
large-scale homogeneous and isotropic material. Hence, an
increase in strain rate in a weaker zone may cause a local
temperature rise due to viscous dissipation, which weakens
the zone even further. As a consequence, the local increase in
strain rate and temperature may amplify strongly because of
the effect of shear heating-induced thermal softening of the
material. Accordingly, catastrophic shear failure may occur
as a result of thermal runaway instability.

The paper is organized as follows. In Sec. II a simple
viscoelastic model is introduced and the basic governing
equations are formulated. In Sec. III analytical methods are
used to derive the condition for thermal runaway to occur in
the adiabatic limit and to estimate the resulting adiabatic
temperature rise. Section IV presents a linear analysis for the
purpose of determining the conditions necessary for thermal
runaway to occur for the general case by taking into account
the effects of thermal conduction. Numerical solutions to the
exact equations are presented in Sec. V, allowing us to quan-
tify the later stages of the thermal runaway process and, in
particular, the effects of thermal diffusion will be addressed.
We proceed in Sec. VI to derive analytically a relatively
simple relation between the evolution of stress, displace-
ment, and temperature rise inside the shear band for an adia-
batic runaway process. The accuracy of this relation is then
evaluated by comparing it to the numerical results for nona-
diabatic processes. Finally, we summarize the main conclu-
sions in Sec. VII.

II. MODEL

We consider a model consisting of an infinite viscoelastic
slab having a finite width L in the x direction; i.e., the ge-
ometry is that of a solid bounded by a pair of parallel infinite
planes �see Fig. 1�. We assume that the slab is in a condition
of simple shear such that the only nonzero component of the
displacement field is the y component, which we denote by
u. Then the shear stress �xy�=�yx�, hereafter denoted by �, is
constant throughout the slab and hence only a function of the
time t �see Eq. �1� below�. Our purpose is to examine spon-
taneous modes of internal failure in the slab. Therefore, in
order to eliminate any additional effects of far-field deforma-
tion that could either aid or trigger failure, we impose zero
velocity at the slab’s boundaries while we assume that the
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initial shear stress in the slab is �0. It is thus assumed that the
shear stress � has attained a value �0 at t=0 regardless of the
slab’s loading history which is not considered in the present
model. Accordingly, the shear stress in the slab decreases
with time from its maximum value �0 due to relaxation and
viscous deformation in the interior. Our particular model
setup with zero velocity boundary conditions amounts to
searching for the ultimate conditions for which the slab will
fail, that is, if it fails at these conditions it is expected to fail
earlier at any others. The temperature T in the slab initially
equals a background temperature Tbg except in the small cen-
tral region having width h and a slightly elevated tempera-
ture T0. The small thermal perturbation introduced in the
central region ensures that initiation of localized deformation
occurs in the neighborhood of the slab’s center. The bound-
aries �x= �L /2� are maintained at the temperature Tbg.

Assuming inertial effects are negligible, it follows from
the translational symmetry in the y and z directions of the
present model that the shear stress must satisfy the reduced
equation for conservation of momentum,

��

�x
= 0, �1�

showing that � is independent of x. Without loss of general-
ity the remaining components of the stress tensor are re-
garded as zero. The viscoelastic rheology is represented by
the Maxwell model �38� for which the strain rate is given by

�v
�x

=
1

��T,��
� +

1

G

��

�t
. �2�

Here v�x , t� is the velocity in the y direction, G is the con-
stant shear modulus, and ��T ,�� is the viscosity. The first
and the last terms on the right-hand side �rhs� of the equation
represent the viscous and elastic components of the strain
rate, respectively. Assuming that the viscosity of the material
is governed by thermally activated processes, the functional
dependence of the viscosity on temperature and shear stress
may be approximated as

��T,�� = A−1eE/RT�1−n. �3�

Here A−1 is a pre-exponential constant, n is a constant char-
acterizing the dominant creep mechanism, E is the activation
energy of creep, and R=8.3 J K−1 mol−1 is the universal gas
constant. Thus the viscosity has Arrhenius dependence on
temperature and it is, in general, a nonlinear function of the
shear stress.

We simplify the mathematical problem by integration of
Eq. �2� to eliminate the velocity from the system of equa-
tions. Utilizing the zero velocity boundary conditions, this
gives

�
−L/2

L/2

Ae−E/RT�n +
1

G

��

�t
dx = �

−L/2

L/2 �v
�x

dx = 0, �4�

and we thus obtain the equation which governs the time de-
pendence of �,

��

�t
= −

GA

L
�n�

−L/2

L/2

e−E/RTdx . �5�

The temperature is determined by the equation for energy
conservation,

�T

�t
= �

�2T

�x2 +
1

C
�� �v

�x
−

1

G

��

�t
� , �6�

where � is the thermal diffusivity and C denotes the heat
capacity per volume. The last term in Eq. �6� accounts for
dissipation in the system and thus includes only the viscous
part of the strain rate. Upon substituting for �v /�x the ex-
pression in Eq. �2�, the energy equation becomes

�T

�t
= �

�2T

�x2 +
A

C
�n+1e−E/RT. �7�

Equations �5� and �7� with the specified initial and boundary
conditions constitute a closed set of equations for T�x , t� and
��t�. These two equations provide the mathematical basis for
calculating all the quantities of interest during the deforma-
tion process since, from the solutions to these equations for T
and �, one may calculate the strain rate directly from Eq. �2�.
We note that, because ��t� is independent of x, it follows
from Eq. �2� that the geometry of the strain rate profile at any
instant concurs with that of the temperature profile T�x , t�.

From the considerations above it is clear that we can infer
important information about the deformation processes by
studying the temperature rises in the system. Useful analyti-
cal results can be obtained by invoking approximations ap-
propriate for describing the initial stages of evolutions of T
and � for which temperature rises are comparatively small. If
instabilities develop, substantial temperature rises are pos-
sible, but correspondingly large decreases in shear stress act
against unlimited growth. Therefore, to quantify the later
stages of the thermal runaway processes, we shall take the
maximum temperature rise, defined as

�Tmax = Tmax − T0, �8�

where Tmax is the maximum temperature with respect to both
time and position as the appropriate physical quantity to

FIG. 1. �Color online� Initial setup of the viscoelastic slab model
discussed in the text �cross section in the xy plane�. The slab is in a
state of stress of simple shear with zero velocity �v=0� boundary
conditions. The shear stress �, constant throughout the slab, initially
�t=0� equals the value �0. The lines show the initial velocity, v�x�,
and temperature, T�x�, profiles. The shaded region illustrates a small
perturbation in temperature T=T0 of width h at the slab center.
Elsewhere, the background temperature is T=Tbg. The geometry of
the strain rate profile concurs with that of the temperature profile.
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study. We solve the system of Eqs. �5� and �7� and estimate
�Tmax using approximate analytical �Secs. III and IV� and
numerical �Sec. V� methods.

III. ADIABATIC CASE

Important insight into the viscoelastic model is gained by
first examining the limiting case of adiabatic heating for
which the first term on the rhs of Eq. �7� is neglected. Then
the temperature is determined by the reduced equation,

�T

�t
=

A

C
�n+1e−E/RT. �9�

A. Analytical solution

As aid toward understanding the slab’s deformation be-
havior, we first examine the time evolutions of temperature
and shear stress in the initial stages for which temperature
changes may be considered comparatively small. In this limit
it is possible to obtain approximate analytical solutions to
elucidate the deformation problem.

As a first approximation, we insert the initial condition for
T in Eq. �5� and perform the integration over space to obtain

��

�t
= − GAe−E/RT0�p�n, �10�

where

�p =
h

L
+ �1 −

h

L
� ��T0,�0�

��Tbg,�0�
�11�

is a factor which characterizes the initial perturbation. At this
point, it is convenient to introduce the quantity �0
���T0 ,�0� and the dimensionless stress and time,

�̃ =
�

�0
, t̃ =

t

�r
, �12�

with

�r =
�0

2G�p
�13�

denoting a characteristic time for stress relaxation in the sys-
tem. The simplified dimensionless form of the equation is
thus

��̃

� t̃
= −

1

2
�̃n. �14�

This equation can be integrated directly by separation of
variables and, for the initial condition �̃=1, the correspond-
ing solutions are

�̃ = e−�1/2�t̃, n = 1 �15�

and

�̃ = 	n − 1

2
t̃ + 1
1/�1−n�

, n � 1. �16�

Another simplification follows from Taylor expanding 1 /T to
first order about the initial temperature T0 in the central per-

turbed zone. Using this approximation, the exponential func-
tion in Eq. �9� may be written as

e−E/RT � e−E/RT0eE�T−T0�/RT0
2
. �17�

Defining the dimensionless temperature

	 =
E�T − T0�

RT0
2 �18�

and using Eqs. �12� and �17�, we can rewrite Eq. �9� on
dimensionless form as

�	

� t̃
= ��0

�c
�2

�̃n+1e	, �19�

which must satisfy the initial condition 	=0 in the perturbed
zone. Here we have introduced the new quantity

�c =�2�p
GCR

E
T0, �20�

having the same dimension as stress. Now, by substituting
solutions �15� and �16� for �̃ in Eq. �19� and once again
integrating by separation of variables, we find the solutions

	 = − ln	��0

�c
�2

�e−t̃ − 1� + 1
, n = 1 �21�

and

	 = − ln��0

�c
�2	�n − 1

2
t̃ + 1�2/�1−n�

− 1
 + 1�, n � 1.

�22�

Both solutions �21� and �22� are seen to exhibit two distinct
modes of evolution, depending on the value of �0. Indeed,
the solutions are bounded only if �0
�c. If this condition is
violated, the temperature grows unlimited at the critical
times,

t̃cr = − ln	1 − ��c

�0
�2
, n = 1 �23�

and

t̃cr =
2

n − 1
	1 − ��c

�0
�2
�1−n�/2

− 1�, n � 1. �24�

The dramatic change in growth of temperature as �0 exceeds
�c indicates that, under adiabatic conditions, �c plays the
role of a critical stress above which thermal runaway occurs.

A few remarks concerning the validity of Eqs. �21�–�24�
are appropriate here. The main effects of the approximations
adopted in deriving these equations are that the heat produc-
tion rate becomes too large for large temperature rises and
that temperatures may increase without limit. In contrast, the
exact equations always give finite values for temperature
rises. Nevertheless, solutions �21� and �22� are expected to
yield reasonable approximations at least into the very early
stages of development of adiabatic thermal runaway. Hence,
we also expect that these simplified estimates correctly pre-
dict the condition for adiabatic thermal runaway to occur.
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That this indeed is the case will be independently verified by
numerical methods in Sec. V.

B. Maximum temperature rise during adiabatic
thermal runaway

We now discuss the later stages of adiabatic thermal run-
away, for which the analytical solutions obtained in Sec.
III A are inapplicable. Then, a simple analytical estimate of
the maximum temperature rise �Eq. �8�� can be made by
considering overall energy balance as follows.

Integration of Eq. �9� over space gives

�
−L/2

L/2 �T

�t
dx =

A

C
�n+1�

−L/2

L/2

e−E/RTdx . �25�

The expression on the rhs can be obtained from Eq. �5�,
giving

A

C
�n+1�

−L/2

L/2

e−E/RTdx = −
L

GC
�

��

�t
. �26�

Combining Eqs. �25� and �26� we obtain

�

�t	�−L/2

L/2

Tdx +
L

2GC
�2
 = 0, �27�

which may be integrated over time to give

�
−L/2

L/2

�T�x,t�dx =
L

C

�0
2 − ��t�2

2G
, �28�

where �T�x , t�=T�x , t�−T�x ,0�. Now, it is reasonable to as-
sume that the viscous part of the deformation mainly occurs
within the initially perturbed zone �x��h /2. Then, essen-
tially no heat will be dissipated outside this zone, and be-
cause diffusion of heat is assumed negligible for the present
case, the temperature rises in these outer regions become
vanishingly small. Inside the perturbed region, dissipation of
heat is expected to be distributed monotonously. To under-
stand the reason, recall that in this region the initial tempera-
ture and therefore the initial viscosity are uniformly distrib-
uted. Accordingly, as long as the process is adiabatic, the
temperature rise in the same region will be approximately
uniform, i.e., independent of x. As a result, the integral in Eq.
�28� may be replaced by a simple integration of uniform
temperature rise over the region �x��h /2. Performing the
integration, we find that the adiabatic maximum temperature
rise inside the perturbed region is given by

�Tmax
a =

�0
2L

2GCh
. �29�

In writing Eq. �29� we have made the assumption that the
runaway process continues until the stress ��t� in the slab is
much smaller than �0. We recognize the quantity �0

2 /2G as
the elastic energy per unit volume stored in the slab in its
initial state. Equation �29� reflects the fact that during ther-
mal runaway and under the assumptions made, all the elastic
energy in the system spontaneously dissipates uniformly as
heat in the initially perturbed zone. As was mentioned earlier,

the geometry of the strain rate profile concurs at any instant
with that of the temperature profile. An immediate conse-
quence of the adiabatic assumption is therefore that the width
of the shear band formed during runaway equals the width of
the initially perturbed zone in which the uniform temperature
rise occurs. Although the adiabatic approximation provides a
simple means to obtain important insight into the process,
neglect of thermal diffusion may give misleading results. The
extent to which the adiabatic assumption is valid will be
investigated by numerical methods in Sec. V.

IV. CONDITIONS FOR THERMAL RUNAWAY:
THE GENERAL CASE

In this section we attempt to determine the conditions
necessary for thermal runaway to occur for the general case
by taking into account the effects of thermal conduction. For
that purpose, we investigate the stability of the coupled Eqs.
�5� and �7� by a linear analysis. Then, as an approximation
for the initial stages, we insert the initial conditions for � and
T in Eq. �5� and carry out the integration over space to obtain
the simplified equation

��

�t
= −

�0

2�r
, �30�

which has the solution

��t� = �0	1 −
t

2�r

 . �31�

Here �r is the relaxation time given by Eq. �13�. Using this
expression, we expand �n+1 to first order in time, yielding

��t�n+1 � �0
n+1	1 − �n + 1�

t

2�r

 . �32�

The expansion is valid for small times t��r. Equation �7�,
determining the temperature rise in the system, may now be
approximated by substituting for �n+1 the result obtained in
Eq. �32�,

�T

�t
= �

�2T

�x2 +
�0

2

C�0
	1 − �n + 1�

t

2�r

e�E/R��1/T0−1/T�. �33�

Our aim is to obtain the conditions for which the perturba-
tion in the central region becomes unstable. Hence, in the
following discussion we consider only the temperature inside
the central region �x��h /2. Assume that the temperature
evolution is continuous and smooth and that there exists a
steady temperature Tss for which �Tss /�t=0. Then Tss satis-
fies the reduced equation for steady flow,

�
�2Tss

�x2 = −
�0

2

C�0
	1 − �n + 1�

t

2�r

e�E/R��1/T0−1/Tss�. �34�

The stability of the steady state solution may be investigated
by superposing a perturbation  on Tss. The resulting non-
steady temperature T=Tss+ must satisfy Eq. �33�, describ-
ing time-dependent flow. For simplicity, we restrict the
analysis to arbitrarily small . In this case, since  /Tss�1,
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we have 1 /T�1 /Tss− /Tss
2 and we obtain for the exponen-

tial term in Eq. �33�

e�E/R��1/T0−1/T� � e�E/R��1/T0−1/Tss�eE/RTss
2

� e�E/R��1/T0−1/Tss��1 −
E

RTss
2 � , �35�

where we keep only the leading term in the last expansion
because E /RTss

2 �1 for arbitrarily small . Using this ex-
pansion and utilizing Eq. �34�, Eq. �33� reduces to a linear-
ized equation for ,

�

�t
= �

�2

�x2 +
�0

2E

C�0RTss
2 e�E/R��1/T0−1/Tss��1 − �n + 1�

t

2�r
� .

�36�

In our search for spontaneous thermal runaway modes we are
interested in finding the conditions for which the initial per-
turbation T0 instantly starts to increase. If we now anticipate
that there is a sharp transition boundary between the stable
modes, where T0 instantly drops, and the unstable modes,
where T0 instantly grows, one may expect that T0 plays the
role of a steady state right at the transition boundary. Accord-
ingly, to obtain the conditions for spontaneous runaway
modes, one should analyze the case in which the initial per-
turbation T0 itself becomes a steady state and therefore
choose Tss�T0 in Eq. �36�. This yields the equation

�

�t
= �

�2

�x2 +
�0

2E

C�0RT0
2�1 − �n + 1�

t

2�r
� . �37�

Then, normalizing time by the relaxation time given by Eq.
�13� and introducing new dimensionless variables

̃ =


E/R
, x̃ =

x

h
, �38�

we recast Eq. �37� into dimensionless form as

� ̃

� t̃
=

�r

�d

�2̃

� x̃2 + ��0

�c
�2�1 − �n + 1�

t̃

2
�̃ . �39�

Here �d=h2 /� is the characteristic thermal diffusion time for
diffusion of heat away from the central region and �c is the
characteristic stress introduced earlier in Eq. �20�. Note that
two combinations of physical parameters appear in this sim-
plified equation, namely, �0 /�c and �r /�d. The first combi-
nation entered the analysis in Sec. III A, in which it was
interpreted as the factor controlling the stability of the sys-
tem in the adiabatic limit. The second combination, which is
the ratio of the relaxation time to the thermal diffusion time,
will modify the stability criterion for processes which are not
adiabatic. The effect of this dimensionless variable on the
conditions for thermal runaway will be addressed in the
analysis below.

Assuming, for simplicity, that ̃ vanishes at the “bound-

aries” x̃= �1 /2 and that ̃ is a positive, even function, the
general solution to Eq. �39� can be represented as a sum of
particular solutions as

̃ = �
m=0

�

fm�x̃, t̃� , �40�

with

fm�x̃, t̃� = Bme�−��r/�d�km
2 +��0/�c�2�t̃−��0/�c�2��n+1�t̃2/4�

� cos�kmx̃� . �41�

Here km= �2m+1�� denote the frequencies of the perturba-
tion satisfying the required boundary conditions and Bm de-
note the amplitudes. It follows from the general formula for
Fourier cosine coefficients that Bm must decrease with in-
creasing m. Furthermore, we note that km increases with in-
creasing m. Accordingly, f0 is the largest term in the series
expansion, and it dominates the stability of the perturbation
in Eq. �40�. To proceed, we must analyze the time evolution
of the perturbation, which is controlled by the argument of
the exponential in f0. For the case when the coefficient in the
leading term in the argument is negative or zero, f0 becomes

a monotonically decreasing function of t̃. As a result, ̃ de-
creases with time, implying a stable situation. In the opposite
case, when the coefficient in the leading term of the argu-
ment is positive, f0 increases with time until it reaches a
maximum for which �f0 /�t̃=0. Solving this equation, we ob-
tain the characteristic time

t̃max =
2

n + 1
	1 − ��0

�c
�−2 �r

�d
�2
 �42�

above which the perturbation begins to decrease and the cor-
responding maximum of f0,

f0�x̃, t̃max� = B0e�1/�n+1����0/�c�−2���0/�c�2 − ��r/�d��2�2
cos��x̃� .

�43�

In Eqs. �42� and �43� we used that k0=�. Thus, for certain
conditions, the solution to this linearized perturbed problem
predicts only a limited increase in temperature. Due to the
linear approximation of the exponential functions in the lin-
ear analysis, however, heat is produced at a rate which is

only a linear function of ̃. This approximation is only valid
for infinitesimal perturbations and severely underestimates
the heat production rate as the perturbation grows toward
finite amplitudes. Nevertheless, we may assume that if the

magnitude of ̃ becomes substantial before t̃ approaches the
characteristic time t̃max, the perturbation will develop into
thermal runaway. To proceed, we therefore investigate the
growth of the quantity

� f0�x̃, t̃max�
f0�x̃,0�

�n+1

= e��0/�c�−2���0/�c�2 − ��r/�d��2�2
. �44�

We now anticipate that a thermal runaway will develop if the
quantity above amplifies beyond the characteristic factor e,
leading to the equation

��0

�c
�−2	��0

�c
�2

−
�r

�d
�2
2

= 1, �45�

for which the solution is
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�0

�c

=��
2 �r

�d

+
1

2
	1 +�1 + 4�

2 �r

�d


 . �46�

The expression in Eq. �46� determines the critical values of
the dimensionless variables �0 /�c and �r /�d at which the
transition between stable modes and unstable thermal run-
away modes occurs. Thus, at the transition between the two
modes, �0 /�c becomes a function of �r /�d. The curve along
which the transition occurs divides the �0 /�c, �r /�d plane
into a “phase diagram,” as illustrated in Fig. 2. As the solid
curve in Fig. 2 shows, the critical values of �0 /�c increase
with increasing �r /�d. However, for �r /�d
10−2 the transi-
tion curve stays almost vertical and the critical �0 /�c ap-
proximately equals its lower bound. The lower bound is ob-
tained in the limit �r /�d→0 and corresponds to adiabatic
processes. In this case Eq. �46� reduces to

�0 = �c, �47�

and we thereby recover the result obtained earlier in Sec.
III A.

Hence, �c is the smallest stress required for spontaneous
thermal runaway to occur. We note, however, that the re-
quired stress for onset of thermal runaway begins to deviate
significantly from �c only when �r /�d�1. Therefore �c pro-
vides a good estimate for the critical stress above which ther-
mal runaway occurs as long as �r /�d
1. In this regime,
then, onset of thermal runaway is to a good approximation
independent of the quantities which control kinetic processes
since these quantities do not appear in the expression for �c
�see Eq. �20��. The results of this linear stability analysis are

consistent with earlier numerical estimates of initial stages of
runaway instability in a two-dimensional setup �39�. Explicit
estimates of �c were made in Ref. �36� and compared to
typical failure stresses in metallic glasses and rocks under
high confining pressure, showing that the predicted values of
�c are within the correct order of magnitude for such sys-
tems.

For the situation when �r /�d�1 the rate of relaxation or
creep in the material is very slow compared to the process of
thermal diffusion, which means that the heat produced rap-
idly flows away from the initially perturbed zone. The stress
required for thermal runaway to occur in this case is there-
fore much larger than �c.

Finally, it should be mentioned that the linear analysis
presented in this section, and leading to Eq. �46�, was based
on the greatly simplified Eqs. �32� and �37�. The correctness
of the obtained results must thus be investigated by a proper
analysis of the set of the fully coupled Eqs. �5� and �7�.
Fortunately, as will be demonstrated in Sec. V, the results of
the linear analysis are found to agree extremely well with the
results obtained from numerical solutions to the complete
equations.

V. NUMERICAL APPROACH

In order to obtain solutions to the complete Eqs. �5� and
�7� without simplifying assumptions we perform numerical
simulations. This enables us to capture any nonlinear effects
in our thermomechanical system and to study the complete
time evolution of T�x , t�, ��t�, and the displacement u�x , t�.

A. Dimensionless equations

The complexity of the problem can be significantly re-
duced by introducing dimensionless variables. Inspired by
the analysis in Secs. III and IV, we choose the particular
normalizations

�̃ =
�

�0
, T̃ =

T

E/R
, t̃ =

t

�r
, x̃ =

x

h
. �48�

In most situations of interest Tbg�E /R �E /R is typically of
the order of 10 000 K�, and for simplicity we therefore re-

strict our numerical analysis to the case T̃bg�1.
The closed set of equations for T and � can then be writ-

ten on dimensionless form as

�T̃

� t̃
=

�r

�d

�2T̃

� x̃2 + T̃0
2��0

�c
�2

�̃n+1e1/T̃0−1/T̃ �49�

and

��̃

� t̃
= −

1

2

h/L

h/L + �1 − h
L�e1/T̃0−1/T̃bg

�
−L/2h

L/2h

e1/T̃0−1/T̃dx̃ .

�50�

Similarly, the dimensionless form of the rheology equation
becomes

FIG. 2. Plots of the critical values of �0 /�c defining the transi-
tion boundaries between stable deformation modes and unstable
thermal runaway modes according to approximate theoretical pre-
dictions. The solid curve shows the results of the linear stability
analysis taking thermal conduction into account, as given by the
expression in Eq. �46�. The critical values of �0 /�c are seen to
increase with increasing �r /�d. The dashed line shows the results of
the adiabatic analysis made in Sec. III which completely neglects
the effects of thermal conduction and thus predicts a threshold
stress which is independent of �r /�d.
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� ṽ

� x̃
= e1/T0−1/T̃�̃n + 2�p

��̃

� t̃
, �51�

where ṽ=v / ��0h /�0�. Displacements are correspondingly
calculated in units of ��0h /�0��r=�0h / �2�pG�.

The utility of this nondimensionalization procedure lies in
that the original problem containing 13-dimensional param-
eters now has been reduced to one containing only eight
dimensionless parameters �as can be verified upon inspection
of the above equations�, substantially reducing the number of
necessary numerical runs. Moreover, the dimensionless tem-

perature T̃ may now be explicitly expressed as a function of
the two combinations of parameters �r /�d and �0 /�c that
were suggested by the linear analysis in Sec. IV as control-
ling parameters for onset of thermal runaway,

T̃ = f1�x̃, t̃,T̃0,T̃bg,
h

L
,n,

�r

�d
,
�0

�c
� . �52�

To ensure correct numerical results the coupled Eqs. �49�
and �50� are solved using a finite-difference method with
nonuniform mesh and a tailored variable time step.

B. Temperature rise

Based on the analysis conducted in Sec. V A, we are now
in a position to investigate the thermal runaway phenomenon
in a self-consistent manner by numerical calculations of the
complete time evolution of T and � with account of heat
conduction. Guided by the results obtained in Sec. III, we
shall begin by studying the maximum temperature rise �Tmax
�Eq. �8��, normalized by the adiabatic temperature rise �Tmax

a

�Eq. �29��, as a function of the governing variables.
The temperature always attains the maximum value at the

center of the slab. Hence, the maximum temperature Tmax
with respect to both time and position must satisfy the equa-
tion

� �T

�t
�

x=0
= 0, �53�

from which, by use of Eq. �52�, it is easy to show that

�T̃max= T̃max− T̃0 is independent of x̃ and t̃. Then, by rewrit-
ing �Tmax

a in terms of dimensionless variables, it is immedi-
ately clear that the maximum temperature rise scaled by the
adiabatic temperature rise is a function of the remaining six
dimensionless variables only, i.e.,

�Tmax

�Tmax
a = f2�T̃0,T̃bg,

h

L
,n,

�r

�d
,
�0

�c
� , �54�

simplifying the problem even further.
To examine the behavior of �Tmax /�Tmax

a , we systemati-
cally varied all six dimensionless parameters and computed
�Tmax from Eqs. �49� and �50� for each selection of fixed
parameter values. We present several sets of numerical runs
in Fig. 3 in terms of contour plots of �Tmax /�Tmax

a versus
�0 /�c and �r /�d for different values of the remaining param-

eters n, L /h, T̃bg, and T̃0. As the series of contour plots
shows, �Tmax /�Tmax

a depends strongly on the two variables

�0 /�c and �r /�d, but it is rather insensitive to variations in
the four remaining parameters. In this sense, �Tmax /�Tmax

a ,
when plotted against the two combinations of parameters
�0 /�c and �r /�d, closely resembles a data collapse. It has
thus been demonstrated that the maximum temperature rise
normalized by the adiabatic temperature rise is, to a quite
good approximation, a function of the two dimensionless
variables �0 /�c and �r /�d alone, as previously suggested by
the linear analysis �see Sec. IV�.

Having identified the controlling variables for the maxi-
mum temperature rise in our system, we can now proceed to
study a representative contour plot, shown in Fig. 4, in more
detail. As can be seen, the plot exhibits a low-temperature
region, corresponding to stable deformation processes, and a
high-temperature region, corresponding to thermal runaway
processes. As was predicted by the linear analysis in Sec. IV,
these two regions are sharply distinguished by a critical
boundary �or “transition curve”� dividing the �0 /�c, �r /�d
plane into a phase diagram. The location of the critical
boundary correlates well with the analytical predictions �see
Fig. 2 for comparison�. This verifies that the conditions for
spontaneous thermal runaway to occur have been accurately
determined. A physical explanation of the stability of the
deformation processes in the low-temperature region is that,
there, the effects of thermal diffusion and stress relaxation

FIG. 3. �Color� Contour plots of �Tmax /�Tmax
a versus �0 /�c and

�r /�d. Each contour plot represents a set of numerical runs for a

certain choice of fixed values for the parameters n, L /h, T̃bg, and T̃0

�values are specified in white boxes�. The collection of the six con-
tour plots thus constitutes a numerical example of independent
variations in all the six dimensionless parameters entering Eq. �54�.
A detailed explanation of a contour plot is given in the caption of
Fig. 4.
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dominate over the positive feedback mechanism. In the high-
temperature region the situation is exactly the opposite, lead-
ing to instability and consequently thermal runaway. In Sec.
V C we turn our attention to the high-temperature region and
we shall in particular discuss the effects of thermal diffusion
on thermal runaway processes.

C. Implications of thermal diffusion: Localization of
deformation and temperature rise during thermal runaway

The high-temperature region exhibited in Fig. 4 is divided
into two domains, as illustrated by red and brown colors. An
essential observation may be emphasized here: the maximum
temperature rises in the red domain are equal to the adiabatic
maximum temperature rises �Tmax

a . However, the maximum
temperature rises in the brown-colored region, i.e., in the
neighborhood of the critical boundary in the high-
temperature region, are seen to be much larger than �Tmax

a .
Therefore, these two domains manifest thermal runaway pro-
cesses of distinctly different characters, as will be outlined
below.

Let us first address the runaway processes occurring in the
red-colored domain. An example of the time evolution of a

thermal runaway process in this domain is shown in Fig. 5.
As can be seen, the process may be divided into three stages
as follows. During the first stage, preceding time marker 2
�i.e., t
0.17�r�, ��t� is seen to decrease nearly linearly with
time while the temperature in the slab center Tx=0�t� and the
maximum velocity vmax�t� increase gradually. A correspond-
ing gradual increase in the spatial distributions of the tem-
perature T and the displacement u is noticed in the outer part
of the initially perturbed zone having width h. However, dur-
ing the second stage, covered by time markers 2–5 �i.e., in
the neighborhood of t�0.17�r�, the shear stress � spontane-
ously drops to zero and is accompanied by a corresponding
explosive rise in the temperature Tx=0 up to a maximum,
whereas one observes an explosive increase in the maximum
velocity vmax up to a peak value immediately followed by a
rapid decrease to a much smaller value again. Moreover,
during this short period of time, a dramatic increase in the
displacement u�x , t� has occurred in the outer part of the
initially perturbed region, while a major essentially uniform
rise in the temperature T�x , t� is observed in the inner part of
this region �0�x
0.4h�. This stage, then, represents an ex-
tremely rapid thermal runaway process occurring during a
time interval much smaller than the thermal diffusion time.
The effects of thermal diffusion are therefore seen to be neg-
ligible. Finally, during the third stage, succeeding time
marker 5 �i.e., t�0.17�r�, vmax decreases smoothly toward
zero while essentially no further changes in the remaining
quantities can be seen. It is worth emphasizing that the rather
constant value of the temperature Tx=0 at this last stage stems
from the thermal diffusion time being too large for any no-
ticeable effects of thermal diffusion to be seen within the
small time interval exhibited in these plots.

In summary, we observe that thermal runaway processes
in the red-colored domain are characterized by a rate of heat
production which is much greater than the rate of heat con-
duction. Accordingly, the runaway process is well approxi-
mated as adiabatic and, as was explained in Sec. III B, the
elastic energy in the slab is therefore dissipated essentially
uniformly throughout the initially perturbed zone ��x�
�h /2�, thus producing a maximum temperature rise �Tmax
which equals the adiabatic temperature rise �Tmax

a . More-
over, during the runaway process a dramatic increase in the
displacement occurs, which represents the formation of an
adiabatic shear band having width of the same order of mag-
nitude as the width h of the initially perturbed zone.

Next, we proceed to analyze the thermal runaway pro-
cesses occurring in the brown-colored domain, exhibiting
much larger temperature rises than �Tmax

a . Figure 6 illustrates
an example of a thermal runaway process in this domain.
Once again, the time evolution of the process may be divided
into three stages: stage one precedes time marker 2 �i.e., t

0.8�r�, stage two is covered by markers 2–5 �i.e., t
�0.8�r�, whereas the last stage succeeds time marker 5 �i.e.,
t�0.8�r�. The initial stage is characterized by a relatively
large time interval in which the stress � decreases approxi-
mately linearly with time. During the same stage it is seen
that the temperature Tx=0 and the maximum velocity vmax
increase gradually. There is basically no change in the spatial
distributions of the displacement u�x , t� or in the temperature
T�x , t�. During the second stage, however, a thermal runaway

FIG. 4. �Color� A representative contour plot of �Tmax scaled by
the adiabatic temperature rise �Tmax

a as a function of the dimension-
less variables �0 /�c and �r /�d. The dark lines represent contour
lines. The plot exhibits mainly two sharply distinguished regions
according to small and large temperature rises, thus defining a criti-
cal boundary dividing the �0 /�c, �r /�d plane into a phase diagram.
The low-temperature region, denoted “stable” �blue and green col-
ors�, represents stable deformation processes. The high-temperature
region represents unstable thermal runaway processes and is further
subdivided into two domains, denoted by “self-localizing thermal
runaway” and “adiabatic thermal runaway” �brown and red color,
respectively�, which represent runaway processes of different char-
acters �see text�. For computational efficiency the very late stages of
the self-localizing thermal runaway processes have not been fully
resolved. The maximum temperature rises presented for these pro-
cesses are therefore underestimated in this plot. See the captions in
Figs. 5 and 6 for an explanation of the cross and the dot.
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FIG. 5. An example of a time evolution of an adiabatic thermal runaway process �see text� corresponding to the location of the dot in

Fig. 4. For this particular case T̃0�0.0488, T̃bg�0.0476, h /L�0.033, n=4, �r /�d�0.027, and �0 /�c�1.83. Panels �a�–�c� display the shear
stress � in units of �0, the temperature in the slab center Tx=0 in units of E /R, and the maximum velocity vmax in units of �0h /�0,
respectively. The two lower panels show a time sequence of spatial distributions in the vicinity of the initially perturbed zone of �d� the
displacement u in units of �0h /2�pG and �e� the temperature T in units of E /R �for illustrative purposes we show profiles only for positive
x�. The spatial distributions of T and u are plotted for six different times corresponding to the time markers �black dots� in panels �a�–�c�. In
all panels the time t is given in units of the relaxation time �r and the position x is given in units of the width h of the initially perturbed zone.

FIG. 6. An example of a time evolution of a self-localizing thermal runaway �see text� corresponding to the location of the cross in

Fig. 4. Here T̃0�0.0488, T̃bg�0.0476, h /L�0.033, n=4, �r /�d�0.006, and �0 /�c�3.06. Panels �a�–�e� are organized in the same manner
as outlined in the caption of Fig. 5. Note, however, that here the spatial scale in panels �d� and �e� is much smaller than the spatial scale of
the corresponding panels �d� and �e� in Fig. 5.
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occurs and thus the stress declines spontaneously toward
zero. Along with this spontaneous stress drop, one observes
an explosive rise in the central temperature up to a maximum
followed by a very rapid decrease. It should be emphasized
here that, in contrast to what was observed in Fig. 5, the later
decrease in Tx=0 highlights the importance of thermal diffu-
sion for this particular type of thermal runaway. The maxi-
mum velocity is seen to accelerate extremely fast up to a
peak value immediately followed by an equally fast decrease
to a much smaller value again. The dramatic rise in vmax as
one moves from stage one to stage two is accompanied by a
corresponding major rise in u�x , t� and T�x , t�. However, the
displacement and temperature profiles in this case show
strikingly different features as compared to the same profiles
obtained in the former case that was shown in Fig. 5. Indeed,
in this case, large deformation is seen to occur much closer
to the slab center and an extremely nonuniform rise in tem-
perature occurs around the origin. In other words, the strain
and temperature profiles continuously localize during the
rapid deformation process. Finally, during the third stage,
Tx=0 decreases gradually due to thermal diffusion and the
deformation process terminates as vmax approaches zero.

In conclusion, we have seen that thermal runaway pro-
cesses in the brown-colored domain are characterized by
continuous localization of the temperature and strain profiles
during deformation, i.e., these runaway processes are spa-
tially “self-localizing.” The elastic energy is thus dissipated
in a zone much narrower than the width of the initial pertur-
bation, resulting in maximum temperature rises �Tmax which
are much larger than the maximum adiabatic temperature
rises �Tmax

a . The self-localization of these runaway processes
clearly arises from the effects of thermal diffusion: by diffu-
sion the temperature profile initially acquires a peak in the
center where the effect of the positive feedback mechanism
accordingly is maximized. The runaway therefore develops
faster in the center than in the regions outside and the defor-
mation process finally terminates in a highly localized shear
band with a characteristic width much smaller than the width
h of the initially perturbed zone.

Finally, we emphasize that the self-localizing failure
modes occur at lower values of the shear stress compared to
the adiabatic modes. Hence, if the material is subjected to a
shear stress large enough to initiate a thermal runaway �i.e.,
���c�, the failure process is expected to be nonadiabatic
and to involve a continuous thinning of the developing shear
band.

VI. RELATION BETWEEN EVOLUTION OF STRESS,
DISPLACEMENT, AND TEMPERATURE RISE

Thus far the possibility of catastrophic material failure by
spontaneous thermal runaway has been demonstrated. An in-
teresting question yet to be investigated, however, is the re-
lation between stress drop, displacement, shear-band width,
and temperature rise during runaway, as now discussed.

For this purpose, let us again consider the viscoelastic
slab shown in Fig. 1. Assume that the viscosity in the central
region �x��h /2 is independent of x and much smaller than in
the regions outside. In this case the system behaves as if two

rigid elastic plates slide past one another on a thin viscous
layer �recall, however, that the deforming slab is not far-field
driven, but that the outer boundaries x= �L /2 are clamped
as internal deformation occurs�. This situation is illustrated
in Fig. 7 where we have defined the initial distribution of the
displacement field u�x , t� to be u�x ,0�=0. In accordance with
this definition, the shape of the displacement profile is as
shown in the figure, and we may define a relative displace-
ment ur�t�=u�h /2, t�−u�−h /2, t� between the boundaries of
the viscous layer. For simplicity, we shall study the case
when the width of the viscous layer h is much smaller than
the system size L, i.e., h /L�1. Then, denoting the initial
stress by �i, it is clear that the maximum possible relative
displacement is approximately given by

ur
max �

L

G
�0. �55�

We stress here that �0 is the initial shear stress in the slab,
whereas ur

max is the displacement corresponding to the final
state for which the slab is completely unloaded. As the rigid
plates continue to slide past one another elastic energy stored
in the rigid plates is continuously dissipated as heat in the
viscous layer. If the sliding process occurs in a time short
compared to that for thermal diffusion, the energy equation
for this layer may be written as

C
�T

�t
= ��t�

��

�t
, �56�

where � denotes the strain inside the viscous central region
and the term on the rhs of the equation is the work dissipated
during irreversible viscous flow. It was seen in the examples
of thermal runaway events in Sec. V C that the shear stress
does not remain constant during deformation, but it drops
spontaneously toward zero. Hence, ��t� is a strongly varying
function of time and as a consequence Eq. �56� cannot be
integrated over time directly. This apparent complication
may be circumvented, however, by instead expressing both �
and � as functions of the displacement. In correspondence
with the adiabatic assumption made here, the temperature
rise within the viscous layer will be uniform. Since the vis-
cosity then is a function of both a uniform temperature and
shear stress, it follows that the viscosity and accordingly the
strain within the viscous layer are uniform. Then, from in-
spection of Fig. 7, it is seen that the uniform strain can be

FIG. 7. Two rigid elastic plates sliding past one another on a
thin viscous layer.
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expressed as a function of the relative displacement ur ac-
cording to the relation

��t� =
ur�t�

h
, �57�

from which we obtain the strain rate

d�

dt
=

1

h

dur�t�
dt

. �58�

Similarly, in the limit L�h and because the outer rigid plates
are purely elastic, it can be gleaned from Fig. 7 that the stress
approximately is given by

��t� � �0 − G
ur�t�

L
. �59�

Substituting these expressions for d� /dt and ��t� in Eq. �56�
and using that ur�t��dur /dt�=1 /2�dur

2 /dt�, the energy equa-
tion takes the form

C
dT

dt
=

d

dt
	��0 −

G

2L
ur�t��ur�t�

h

 . �60�

Next, it follows from Eq. �59� that �G /2L�ur�t�= 1
2 ��0

−��t��, and the energy equation may thus be written as

C
dT

dt
=

d

dt
	1

2
��0 + ��t��

ur�t�
h


 , �61�

thereby eliminating G /L from the equation. The desired re-
lation between dynamic quantities can now be obtained by
direct integration of the energy equation with respect to time.
If the deformation process terminates at some final time tf,
then upon integrating from t=0 to tf, we find

C�Tf =
��0 + � f�

2

ur
f

h
. �62�

Here � f =��tf�, �Tf =T�x , tf�−T�x ,0�, and ur
f =ur�tf�. Not sur-

prisingly, Eq. �62� shows that to correctly account for de-
crease in shear stress during deformation, one should use the
average of the initial and final shear stresses in calculating
the work done by the rigid plates on the viscous layer.

The relation between dynamic quantities in Eq. �62� was
obtained under the assumption of adiabatic conditions. Yet, it
was clarified in Sec. V C that thermal runaway processes are
greatly affected by thermal diffusion and therefore not truly
adiabatic. As a consequence shear was seen to localize to a
region of width much smaller than the width h of the initially
perturbed region. It is therefore of interest to evaluate the
accuracy of Eq. �62� for the more general case, including
self-localizing runaway processes, by numerical methods.
For this reason proper definitions of the quantities entering
Eq. �62�, valid also for nonadiabatic processes, are needed.

Figure 6 shows that the first stage of stress relaxation does
not contribute notably to deformation. We define the initial
shear stress �i associated with the process of shear-band for-
mation to be the stress at the instant ti at which the curvature
of the temporal stress curve d2� /dt2 first becomes negative.
Thus �i is the shear stress in the slab right at the onset of
thermal runaway. The final stress, � f, is defined as the stress

corresponding to the instant tf at which d2� /dt2 exhibits a
maximum. � f is thus the shear stress in the slab right at the
instant at which the thermal runaway process terminates. For
illustration, �i and � f are the stresses corresponding to time
markers 2 and 5 in Fig. 6�a�, respectively. Next, in order to
define the shear band properly, we must identify the point in
the displacement profile where a sharp transition from very
large strain to small strain occurs �for example, in the dis-
placement profile corresponding to time marker 6 in Fig.
6�d�, this sharp transition occurs at the position x /h�0.01�.
For this reason, we must analyze the second derivative of the
displacement profile �2u /�x2 at the instant of time when the
runaway process terminates �essentially no further deforma-
tion occurs for later times�. We define the shear band to be
the region �x��w /2, where x=w /2 corresponds to the posi-
tion at which �2u /�x2 becomes a minimum �by symmetry
�2u /�x2 becomes a maximum at x=−w /2�. The final relative
displacement across the shear band is then given by ur

f

=u�w /2, tf�−u�−w /2, tf�. In our numerical calculations we
replace the quantities �0 and h in Eq. �62� by �i and w,
respectively. Lastly, the temperature rise �Tf in Eq. �62� is
now taken to be the maximum temperature rise �Tmax occur-
ring in the center of the slab.

With all the quantities properly defined and since the con-
trolling variables for onset of thermal runaway have been
identified, it is now possible to investigate the robustness of
Eq. �62� by numerical analysis. Numerical calculations of the
quantities entering Eq. �62� versus the controlling physical
parameters �0 /�c and �r /�d, where the controlling param-
eters are varied over the same range as in Fig. 4, show that

1 �
2wC�Tmax

��i + � f�ur
f � 2. �63�

Hence, according to our model, the simple relation in Eq.
�62� is applicable even to nonadiabatic situations leading to
self-localizing processes.

VII. DISCUSSION AND CONCLUSIONS

The mechanism of spontaneous thermal runaway in vis-
coelastic solids has been analyzed within the framework of a
highly simplified one-dimensional continuum model. As a
first approximation the model is only intended to contain the
most essential physics governing the thermal runaway phe-
nomenon and certainly neglects many important effects en-
countered in the more complicated experimental situations.

Among the most crucial simplifications made in the
present model is perhaps our neglect of significant changes
in material properties that may result from the very large
temperature rises associated with the runaway instability.
The model does not include corrections due to effects of
melting, although melting of the material near the shear band
may be possible. Also, the influence of melting on shear-
band formation could potentially increase the rate of defor-
mation even further and cause propagation of elastic waves,
which would then require consideration of inertial effects.
For these reasons the calculations made within the present
model are strictly valid only until these changes take place,
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and the model may therefore be assumed to reproduce only
qualitatively the correct deformation behavior during the
later stages of the thermal runaway process. However, the
inertia becomes significant only after the onset of localiza-
tion and/or thermal runaway and hence does not affect the
conclusions of our study. This statement was also checked by
additional numerical studies based on the full system of
equations which include the inertial terms.

Our approach has thus been to investigate the simplest
possible model which still has some expectation of repre-
senting a real physical situation reasonably well. Although
the ideal character of the model should not be ignored, it
allows for a quantitative treatment of the deformation prob-
lem that hopefully provides valuable information about the
behavior of the thermal runaway failure mechanism.

A basis for the theory is the assumption that the tempera-
ture dependence of the material’s viscosity can be described
approximately by an Arrhenius expression and that it gener-
ally has a nonlinear dependence on the shear stress. This
represents a simple model accounting for thermally activated
transitions in the solid, believed to be responsible for non-
elastic behavior below the yield stress. As a consequence,
thermal runaway instability may occur due to shear heating-
induced thermal softening of the material.

In order to determine the conditions necessary for thermal
runaway to occur a theoretical analysis was carried out. Ne-
glecting the effect of thermal diffusion, i.e., assuming adia-
batic conditions during deformation, approximate analytical
solutions supposed to be valid for the early stages of time
evolutions of temperature and shear stress were found. For
this case it was shown that the system becomes unstable
against shear banding due to spontaneous thermal runaway if
the initial shear stress �0 becomes larger than a critical stress
�c �Eq. �20��. To investigate the effects of thermal diffusion
on the instability conditions, we subsequently performed a
linear analysis using rather rough approximations of the
complete system of equations. The stability condition ob-
tained within the adiabatic approximation was then modified
to include an additional controlling combination of physical
parameters, namely, the ratio of the relaxation time �r to the
thermal diffusion time �d. According to this analysis �c still
provides a good estimate for the critical stress above which
spontaneous thermal runaway occurs as long as �r /�d
1.
However, when �r /�d�1, the rate of relaxation or creep in
the material is very small compared to the process of thermal
diffusion and the stress required for thermal runaway to oc-
cur in this case is therefore much larger. These results were
independently verified by finite amplitude numerical analysis
as demonstrated by a series of contour plots of the maximum
temperature rise �Tmax �Fig. 3�. Hence we conclude that ini-
tiation of spontaneous thermal runaway is controlled by the
two combinations of parameters �0 /�c and �r /�d only.

Numerical investigation of the maximum temperature
rises and displacement profiles during thermal runaway in-
stabilities revealed two potential types of thermal runaway
processes having distinctly different characters. The first, oc-
curring under near adiabatic conditions, is characterized by
essentially uniform temperature rise and strain inside the per-
turbed zone and is therefore referred to as adiabatic thermal
runaway. The second, occurring under nonadiabatic condi-

tions, is characterized by continuous localization of the tem-
perature and strain profiles during deformation and is accord-
ingly referred to as self-localizing thermal runaway.
However, the self-localizing failure modes occur at lower
values of the shear stress compared to the adiabatic modes.
In materials subjected to increasing loads the actual failure
process is therefore expected to be nonadiabatic. Thus, if the
shear stress in the material exceeds a critical value of the
order of �c, the material starts to internally disintegrate by
unloading the elastic energy stored in the bulk of the medium
through accelerated creep along a continuously narrowing
band. Since creep is a thermally activated process, this rapid
increase in creep is achieved by local rise in temperature. In
turn, the accelerated creep prevents the material from local
cooling due to thermal conduction. This opens for the possi-
bility that some materials become unstable against macro-
scopic perturbations �that localize extremely while develop-
ing� before reaching the theoretical shear strength limit at
which the material would break locally, i.e., at the lattice
scale. In this way the material may fail by ductile deforma-
tion at scales much smaller than the deforming sample size
and notably at scales much smaller than the characteristic
width of an initial thermal perturbation, but which still are
orders of magnitude larger than interatomic spacing.

Finally, a quantitative relation between evolution of stress,
deformation, and temperature rise was obtained for adiabatic
shear-banding processes by analytical methods. Numerical
calculations of self-localizing thermal runaway processes
within our simple viscoelastic model have been carried out,
showing that the same relation is valid also for this particular
case. In order to establish the robustness of Eq. �62�, how-
ever, it would be instructive to compare this relation to the
results of improved model calculations of the later stages of
thermal runaway processes taking into account important
changes in material properties as commented upon above.

Recent studies �40,41� showed that the theory developed
here and in Ref. �36� is applicable to explain the generation
of intermediate-depth earthquakes. In contrast to this study in
which we consider infinitesimal perturbations ��p�1 and
T0�Tbg�, John et al. �41� considered large amplitude finite
perturbations of the system caused by water influence on
rheological properties of rocks subjected to differential
stresses. Even though the finite amplitude perturbations dis-
tort the data collapse �such as presented in Fig. 3�, the rep-
resentation of results as a function of the two combinations
of parameters �0 /�c and �r /�d was proved to be useful. Us-
ing laboratory derived properties of diabase, the typical rep-
resentative of lower crust rocks, John et al. �41� showed that
the self-localizing thermal runaway can be considered as a
potential mechanism for deep earthquakes.

A thorough quantitative comparison of the theory pre-
sented here with experiments on bulk metallic glasses and
polymers at various loading conditions and temperatures is
outside the scope of the present discussion. Nevertheless, a
very rough estimate of the ratios �0 /�c and �r /�d for bulk
metallic glasses is possible. For bulk metallic glasses, typical
values are C=1.6�106 J m−3 K−1 �6�, G=34 GPa �42�, and
E=100–400 kJ mol−1 �43,44�. Assuming a temperature Tbg
�620 K and infinitely small amplitude of the perturbation,
i.e., �p�1, we obtain �c=0.8–2 GPa. Our study shows,
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however, that the critical value of the stress �0 needed to
initiate self-localizing thermal runaway may differ signifi-
cantly from �c if the ratio �r /�d is large. The estimate of this
ratio is much less certain. Only the thermal diffusivity � has
a well-established value of 3�10−6 m2 s−1 �6�. From Ref.
�25� the viscosity �0 at this temperature is inferred to be
approximately 1011–1012 Pa s. The characteristic width h of
the initial perturbation, representing a macroscopic perturba-
tion in the material, is highly uncertain but a lower bound
may be estimated. Experimental observations �6� of the
width w of the zone affected by deformation around shear
bands give w�1 �m. Because of the self-localizing nature
of the deformation �Fig. 5�c��, we expect that h�w and
hence we assume h=10 �m–10 mm �limited by the typical
sample size�. These very rough estimates give a value for the
dimensionless ratio �r /�d ranging from 10−2 to 105 and the
critical value of �0 necessary for self-localizing thermal run-
away to occur may be expected to be close to the critical
stress �c. It should be noted that our estimate of �0��c
�0.8–2 GPa represents the upper limit of critical stress in
the system. Modifications of our idealized model setup by
e.g., increasing the intensity of the initial perturbation �de-
creasing �p� and accounting for the effect of dynamically
building up the shear stress in the system would significantly
decrease the stress required to initiate instability �41�. With-
out detailed analysis of particular cases, a quantitative com-

parison of our theory to experimental results on bulk metallic
glasses is, at present, somewhat difficult as the above esti-
mate of the ratio �r /�d clearly is insufficiently constrained.
Explicit studies invoking appropriate constitutive behavior
should be undertaken; for example, it might be more realistic
using a Vogel-Fulcher-Tamman or Cohen-Grest �45� depen-
dence of viscosity on temperature instead of the Arrhenius
dependence employed here. However, the self-localizing
thermal runaway mechanism appears to be compatible with
current experimental data and should, in our opinion, be con-
sidered as a potential mechanism governing instabilities also
in materials such as bulk metallic glasses and glassy poly-
mers.

The study �41� also demonstrated that the theory may be
applicable to the system described not only for thermal but
also for rheological perturbations such as variations in acti-
vation energy of creep E and/or pre-exponential constant A.
The rheological model of the system �Eq. �3�� may also be
extended to include low-temperature plasticity �Peierl’s plas-
ticity �13��.
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